MULTIPLE MYELOMA

Plasma Cell Disorders

Karen Harden MS, RN, AOCNS
Clinical Nurse Specialist
University of Michigan Health System
Relatively uncommon cancer
22,350 new cases expected in 2013
More common in men than women
10,710 deaths expected in 2013
5 year survival rate 42%
Survival rates are higher in younger people
Plasma cells produce immunoglobulins in the B-cell (humoral) immune system in response to antigens.

5 major immunoglobulin classes are: IgG, IgM, IgA, IgD, IgE (heavy chains)

Subunits of immunoglobulins:
Light chains (kappa and lambda)
The key to healthy plasma cells is that they are “polyclonal”

Malignancy happens when they become “monoclonal”
- They lose ability to make different copies of the cells and start making multiple copies that are all the same.
- Can usually be measured in bone marrow as well as serum and/or urine. Occasionally only found as soft tissue masses (plasmacytomas)
Malignant clonal proliferation of plasma cells

MM causes the oversecretion of one specific immunoglobulin known as the M protein (monoclonal protein)

- IgG and IgA more common

Slowly progressing disease

Risk Factors:

- Several chromosomal alterations are associated (deletions and translocations - (t(11;14) and t(4;14) most common)
- Exposure to nuclear radiation
- Seen more often in farmers, leather and wood workers and those exposed to petroleum products.
CRAB criteria

- Hypercalcemia
- Renal disease- creatinine >2.0 mg/dL or creatinine clearance < 40 mL/min
- Anemia- normochromic, normocytic anemia with hemoglobin <10
- Bone disease- lytic lesions, osteopenia, pathologic fractures
- Recurrent infections (>2 in 1 year)
- Greater than 10% plasma cells in the bone marrow

HYPERCALCEMIA

- Most common oncologic emergency
- Seen in up to 30% of MM patients
- Elevated due to bone destruction
- Bisphosphonates prevent the loss of bone mass

Notes on Nursing Care:
Monitor for side effects related to bisphosphonates
ONJ - Osteonecrosis of the jaw
Increase mobility/exercise to help maintain bone mass
BONE PAIN OR FRACTURES

- Unexplained pain
- Osteolytic lesions
- Fractures (ribs, femur, clavicle most common)
- Compression fractures of the spine

Notes on Nursing Care:
- Pain management
- Monitoring bone health - scans
- Monitor for potential fractures
- Assess for signs of cord compression - sensory and motor loss
RENAL FAILURE

- Light chain and heavy chain immunoglobulins precipitate and cause damage to renal cells and renal tubules
- Hypercalcemia

Notes on Nursing Care:
- Maintain hydration to avoid renal failure
- Avoid use of NSAIDs
- Avoid IV contrast
- Monitor for renal dysfunction with chronic use of bisphosphonates
Susceptibility to Infection

- Decreased immunoglobulins fighting infection
- Crowding out of normal WBCs from clonal plasma cells in marrow (also causes anemia)

Notes on Nursing Care:
Monitor for fever
Assess for sites of infection
Neutropenic precautions
Avoid crowds and ill friends and family
Patient education

www.steadyhealth.com
CLOTTING DISORDERS

- Interference with clotting factors
- Platelet dysfunction

Notes on Nursing Care:
Assess for signs of bleeding
Monitor for neuro/cerebellar changes
Transfuse for plts <20
Patient education
NEUROLOGIC SYMPTOMS

- Nerve compression
- Hyperviscosity may cause CNS changes (visual, HA)
- Confusion related to Hypercalcemia
- Therapy related toxicity

Notes on Nursing Care:
Monitor for neuro/cerebellar changes
Assess for orientation
Muscle weakness
Sensory loss
Safety concerns
Hyperviscosity

- Increased monoclonal protein coats RBCs and makes them sticky
- Impairs circulation
- Peripheral neuropathies
- Organ damage
- Amyloidosis - clumping of proteins sitting in organs - causes organ dysfunction

Notes on Nursing Care:
Assess for infection/bleeding
Monitor for neuro/cerebellar changes
Transfuse for hgb<7 and plt<20
Patient education
Emotional support
STAGING OF MULTIPLE MYELOMA

<table>
<thead>
<tr>
<th>International Staging System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
</tr>
<tr>
<td>Stage II</td>
</tr>
<tr>
<td>Stage III:</td>
</tr>
</tbody>
</table>

Beta-2 microglobulin - non-specific tumor marker that indicates an increase in tumor burden in patients diagnosed with Multiple Myeloma. Decreasing levels may indicate a response to treatment.
Disease may be slowly progressing for years and not require treatment.

Varying combinations are used when symptoms present

First Line Drugs
- Thalidomide
- Dexamethasone

Second Line Drugs
- Lenalidomide
- Velcade

VDT PACE
- Velcade, Dexamethasone, Thalidomide, cisPlatinum, Adriamycin, Cytoxan and Etoposide
Mr. K is a 59-year-old gentleman with IgG kappa multiple myeloma, here for evaluation prior to autologous transplant. Mr. Keller was diagnosed in May 2011. At that time his M-protein was 3.6, he had an 85% plasma cells in his bone marrow, anemia, normal creatinine, normal calcium, no clear evidence of lytic lesions. Urine protein electrophoresis in July 2011 was negative, although small quantities of Bence-Jones protein could be identified in the BJP test. He had normal cytogenetic with (11;14) translocation on FISH. Overall, he seems to have a stage I or II at diagnosis.
REFERENCES

- http://www.cancer.org/research/cancerfactsfigures/index